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Abstract:
We demonstrate that one should not expect convergence of the proposals to the
subgame perfect Nash equilibrium offer in standard ultimatum games. First,
imposing strict experimental control of the behavior of the receiving players and
focusing on the behavior of the proposers, we show experimentally that proposers
do not learn to make the expected-payoff-maximizing offer. Second, considering a
range of learning theories (from optimal to boundedly rational), we explain that
this is an inherent feature of the learning task faced by the proposers, and we
provide some insights into the actual learning behavior of the experimental
subjects. This explanation for the lack of convergence to the subgame perfect
Nash equilibrium in ultimatum games complements most alternative explanations.
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1.  Introduction
One of the games most extensively studied in the literature in recent years is the

ultimatum game. The reason that this game is so intriguing seems to be that the
game-theoretic analysis is straightforward and simple, while the overwhelming experimental
evidence is equally straightforward but at odds with the game-theoretic analysis (see, e.g.,
Güth et al. [1982], Güth & Tietz [1990], or Thaler [1988]).

In the basic ultimatum game there are two players and a pie. Player A proposes how
to split the pie between herself and player B. Upon receiving player A's proposal, player B
has two options. First, to accept the proposal, which will then be carried out. Second, to
reject it, after which both get nothing. Many variants of this basic setup have been
considered in the literature. There are many Nash equilibria in this game. Every strategy for
player A combined with any strategy for player B that accepts that offer but rejects all lower
offers is one. But there is a unique subgame perfect equilibrium: player A offers the minimal
piece, and player B accepts that.1

Empirical evidence shows time and again that this is not what happens in the
laboratory. Players A usually offer somewhat less than half the pie to players B, and players
B usually reject small offers. Concerning player A's behavior, there are two main
explanations for this anomaly offered in the literature. First, some argued that fairness and
reciprocity considerations are the force driving players A to offer more than the standard
game-theoretic analysis would suggest (see, e.g., Forsythe et al. [1994]). An alternative
explanation found in the literature is that players A are basically following an adaptive,
best-reply seeking approach to the behavior of players B. In a multi-period setup where
players played the game repeatedly but each time against different players, some papers
showed how it can happen that players A `unlearn' to play the subgame perfect equilibrium
strategy as players B have not learned yet that they should play their perfect equilibrium
strategy. Once players A do not play that strategy anymore, players B will never learn to play
theirs. Such learning dynamics are shown in Roth & Erev [1995] who follow a reinforcement
learning approach, and Gale et al. [1995] who use replicator dynamics.

Both explanations are somehow based on the assumption that players A learn to play
best-replies to the behavior of players B. The deviation from the predictions of subgame
                    
     1 Strictly speaking, in case it is a discrete choice problem including zero, there are two subgame
perfect equilibria, with player A offering either zero or the smallest possible strictly positive piece to
player B.
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perfect Nash equilibrium is, therefore, mainly explained by deviating behavior of players B.
Players A only react on this deviation which is caused by a slow learning process or fairness
considerations. In this paper, in contrast, we will show that the adaptive behavior of players A
as such may also cause deviations from the subgame perfect Nash equilibrium, keeping
players A away from the optimal minimal offer independent from the adaptive behavior of
players B.2

In order to focus on the behavior of players A, we design an ultimatum game
experiment in which the behavior of a large population of players B is fixed by some
computer algorithm. This was known to the players. Our experimental design has two
advantages. First, as there are no payoffs to other people influenced by the behavior of
players A, fairness considerations cannot play a role. Second, learning in ultimatum games
is essentially a coevolutionary process. Players learn about the behavior of other players
who learn about the behavior of other players who learn .... Our experimental design allows
to focus on the learning behavior of players A, abstracting from the complications and
peculiarities related to coevolutionary processes.3

Basically, the problem faced by a player A is a multi-armed bandit problem. There are
three treatments that differ in the general level of acceptance rates. The experimental
parameters in each treatment are such that two monotonicity properties are satisfied: higher
offers are more likely to be accepted, whereas lower offers are giving higher expected
payoffs to the proposer.

Two stylized facts stand out in the experimental data. First, although the experiment
comprises 100 periods, there is only little tendency for the average offer to come down to the
minimal offer, the one that maximizes a proposer's expected payoff. Second, although the
incentive structure of the proposers is the same in each treatment, higher general
acceptance rates lead to significantly lower offers.

We consider a range of learning theories, from optimal learning (based on the Gittins
index) to more boundedly rational learning methods. We show that both stylized facts can be

                    
     2 Vriend [1997] presented some theoretical considerations why paying more attention to the
behavior of the proposing players as such could be worthwhile.
     3 Our approach is similar in spirit to a dictator game (see, e.g., Bolton et al. [1998]), in the sense
that dictator games were also invented to cut out players B. But there are two advantages of our
setup. First, in a dictator game players A know the behavior of players B (accepting anything),
whereas this is not the case in our setup. Second, in a dictator game fairness considerations still play
a role.
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explained by these learning theories. In other words, having imposed strict experimental
control on the behavior of the receiving players, we show that one should not expect
convergence to the subgame perfect Nash equilibrium in standard ultimatum games. One of
the main contributions of our paper, then, is that this offers an explanation for the lack of
convergence to the subgame perfect Nash equilibrium in ultimatum games, an explanation
that complements most existing explanations.

The rest of this paper is organized as follows. In section 2 we present the
experimental design, and in section 3 the experimental results. Various learning theories to
explain the experimental data are discussed in section 4, and their predicted dynamics are
examined in section 5. Section 6 concludes.

2.  Experimental design
The underlying idea for our design is the following. First, we wanted to set up a

stylized ultimatum game in which the optimal strategy for players A would coincide with the
subgame perfect equilibrium strategy of the standard ultimatum game of offering only a
minimal slice. Second, as we wanted to focus on players A's learning behavior, we wanted to
be in a position to exclude as much as possible other well-known explanations for players A
staying away from the optimal action. In particular, this implies that we needed to be in a
position to abstract from the learning behavior of the receiving players B.

We play an ultimatum game in which the pie has size 9, and we allow only integers
from 1 to 9 to be chosen as offers (see also Roth & Erev [1995]). The experimental subjects
are players A, who play against players B who form a large population of artificial agents,
making their decisions using some computer algorithm. Every period a given player A is
randomly matched with a player B that he has not met yet. Player A enters his offer, and then
the reply of player B and the corresponding payoff for player A are shown. There are 100
periods to be played. Notice that this is more periods than in experimental ultimatum games
typically reported in the literature. Figure 1 shows a player's screen during the experiment. A
player could at any moment during the experiment scroll through his complete history. The
identity of players B is listed on the screen to make clear that every period the opponent is a
different player. Each period, after the choice of player A, it takes 5 to 15 seconds (uniform
randomly chosen) before the reply of player B is listed (saying "please wait for reply player
B"). This suggests players B make serious choices, and it avoids players A getting rushed



5

too much by the speed of players B.

ROUND 2

Your opponent is player B with id.: 649,021

Please choose your offer to player B:   . . . .    and press Enter

HISTORY

period id. player B your offer reply player B your payoff

1 231,896 2 accept 7

Figure 1.  Sample interface during experiment

Using artificial players B allows us to control the environment for players A. Players A is told
that players B are artificial players. Given that the players B are artificial players, altruism
considerations are irrelevant. We told players A: “Each of those players B's behavior is
systematic in the following sense: If a specific player B has accepted an offer x then that
player B would have accepted as well any offer greater than x. And if offer x had been
rejected by that player B, so would have been all offers smaller than x. Of course, different
players B might have different opinions about which offers are acceptable or not. The players
B do not change their behavior over time” (see instructions in the appendix). As a result, the
population of players B can be characterized by a probability density function that a given
offer will be accepted. The probability that a given offer is accepted is monotonically
increasing in the size of the offer.4 We organize three treatments, that differ in the general

                    
     4 Hence, in our experiment there is a heterogeneous population of players B who play pure
strategies characterized by a reservation value property. That is, every player B has a reservation
value, but different players may have different values. An alternative possible interpretation
concerning the population of players B is that the population consists of identical players who use a
mixed strategy characterized by probabilities of accepting offers that are monotonically increasing in
the size of the offer.
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level of acceptance probabilities. The probabilities that a randomly chosen player B will
accept a given offer in each treatment is listed in Table 1.

offers
treatment 1 2 3 4 5 6 7 8 9

ult3 0.30 0.31 0.32 0.35 0.39 0.47 0.64 1.00 1.00
ult5 0.50 0.51 0.54 0.58 0.66 0.79 1.00 1.00 1.00
ult7 0.70 0.72 0.76 0.82 0.92 1.00 1.00 1.00 1.00

Table 1.  Acceptance probabilities

These probabilities are based on the following considerations. First, the expected payoff
maximizing offer is 1, which coincides with the subgame perfect equilibrium strategy of a
standard ultimatum game. Second, the acceptance probabilities increase monotonically with
the size of the offer, thus maintaining realistic assumptions concerning the behavior of
players B. Third, given the two considerations already mentioned, we wanted to make the
learning task as easy as possible. Therefore, the minimal offer of 1 gives an expected payoff
that is clearly higher than for any other possible offer. Moreover, there are no local optima in
the strategy space of players A. This avoids that many adaptive modes of behavior can be
locked in too easily at sub-optimal peaks in the range of possible offers. Starting from the
minimal offer of 1, in each treatment each next higher offer gives an expected payoff that is
at least 10% lower. Figure 2 shows these resulting expected payoffs for each treatment.
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Figure 2.  Expected payoffs across treatments

The experiments were conducted in the computerized experimental laboratory CEEL of the
University of Trento in November 1997. With only a few exceptions, all players for a given
treatment were simultaneously in the laboratory. The players, 19 for the ult3 treatment and
20 for the other treatments, went through the experiment in about an hour. The exchange
rates (Italian Lires per point) were 83.3 (for ult3), 50.0 (ult5), and 35.7 (ult7). These exchange
rates were chosen such that the monetary incentives were essentially identical in each
treatment. The only differences are due to rounding, and to the fact that the acceptance
probabilities cannot exceed 1, which is of relevance only for some of the highest offers in
some treatments. The average monetary reward was just over Lit. 15,000 per player (about
US $ 8.80 at the time).

3.  Experimental data
Figure 3 presents the time-series of the offers averaged over the players in each of

the three treatments.
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Figure 3.  Average offers in ultimatum game experiment

We observe the following. First, in each treatment the average initial offer is about 4, slightly
below the 50% offer. Second, from period 10 to 90, the average offers in each treatment
decline significantly but slowly,5 and in none of the treatments do the players learn to make
the optimal offer of 1 (although there is a downward end effect, in particular in the treatments
ult3 and ult5).6 Third, although the monetary incentives were the same in each treatment,
there is a systematic difference across treatments, with higher acceptance probabilities
leading to lower offers.7 These differences emerge in particular during the first 10 periods.

                    
     5 A simple regression against time gives coefficients of -0.012, -0.004 and -0.004 for the ult3, ult5
and ult7 treatments respectively (all significant at 0.005; 1-sided). Extrapolation of the observed
rates implies that it would take hundreds of periods more in each treatment for the average offer to
reach 1.
     6 Such end effects are relatively common in experiments.
     7 A Wilcoxon-Mann-Whitney test, based on the average offer for each individual player over the 100
periods of the experiment, shows that the players offer significantly more in the ult3 than the players
in the ult5 treatment, who in turn offer significantly more than those in the ult7 treatment (at 0.005
significance level; 1-sided).
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4. Some learning theories
In this section we present a number of learning theories that might help to explain

the experimental observations.

4.1 Modeling rational learning
As explained above, in our experimental design we simplified the standard

ultimatum game into a one-person decision problem. This decision problem in our
experiment resembles a multi-armed bandit. For many specific kinds of repeated multi-
armed bandit situations optimal behaviors are given in the literature (see, e.g., Gittins
[1989], Bergemann & Välimäki [2001] and Brezzi & Lai [2002]). One standard multi-armed
bandit situation is characterized by people knowing the value of the payoffs, πi, that they
might receive with each of the arms i. They also know in this situation that they receive
each payoff with a fixed but unknown probability pi. If, in addition, the probabilities pi are
independent of each other, the Gittins index can be used to determine the optimal
behavior.

The Gittins index has been introduced by Gittins [1979, 1989]. It assigns at each
time to each arm the maximal average payoff that can be obtained by repeatedly choosing
that arm for an event-dependent number of times. Each time an arm is chosen, it is
determined randomly, according to the probability assigned to the arm, whether a payoff is
obtained or not. After each choice it is decided, depending on the experience with this arm,
whether the arm is chosen again or not. How this decision is made is called the stopping
rule. Many different stopping rules can be imagined. If we consider the time span from the
actual time t until the time at which the choice is changed because of the stopping rule, the
average payoff that is received within this time span can be calculated. This average
payoff depends on the stopping rule. The Gittins index is defined as the maximal average
payoff that can be reached by any stopping rule. We denote the Gittins index for arm i at
time t by gi(t). To calculate the average payoffs for each stopping rule it is necessary to
calculate the probability for obtaining a payoff at each time. Since the real probabilities are
not known, Bayesian updating is used for calculating these expected probabilities. Hence,
the concept of Gittins indices is based on two basic features. First, Bayesian updating is
used to calculate the expected probabilities of payoffs. Second, average expected payoffs
are calculated for each arm separately according to the stopping rule approach. Gittins has
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proved that choosing at each time, t, the arm, i, with the highest Gittins index, gi(t), is the
optimal strategy for the situation described above.
 Strictly speaking, the use of the Gittins index is not appropriate for the situation
faced by the players in our experiment. The reason is that the arms are not independent.
The information given to the players implied that the probability of acceptance was weakly
increasing in the size of the offer. This requires two modifications of the standard Gittins
index approach.

First, when updating the probability of acceptance for some arm i in the context of
our ultimatum game, a player should also update the probabilities for all other arms, as he
knows that pi ≤ pj for each i < j. As a consequence the hypotheses in Bayesian learning
have to be formulated for all arms jointly. Hence, a hypothesis is characterised by nine
probabilities: p1, p2, …, p9, the probabilities assigned to each of the nine arms. The number
of possible hypothesis is reduced by the condition p1≤p2≤p3≤p4≤p5≤p6≤p7≤p8≤p9.
Therefore, the set of all feasible hypothesis is given by

}|),...,,{( 987654321921 ppppppppppppH ≤≤≤≤≤≤≤≤= .

The probability P(h,t) that is assigned to each hypothesis, h∈ H, at each time, t, is updated
according to Bayes' rule. The expected probability to obtain a payoff if choosing arm i is
given by

∑
∈

⋅=
Hh

ii hpthPtE )(),()(

or

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫=
1

0 0 0 0 0 0 0 0 0
987654321921

9 8 7 6 5 4 3 2

),,...,,()(
p p p p p p p p

ii dpdpdpdpdpdpdpdpdpptpppPtE . (*)

The expected probabilities defined by Equation (*) are used in the calculation of the
Gittins indices.8 Hence, the Gittins indices are based on expected probabilities that are
calculated using all the available information.

Second, when choosing an arm, a player should not simply try the arm with the
highest Gittins index because he should take into account as well that the outcome with
that arm will provide useful information about the other arms (as, according to Equation (*),

                    
     8 This integral can be calculated in closed form for each possible history. However, for reasons of
convenience we will do this numerically.
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the expected payoffs of other arms change when using a given arm). No optimal strategy
is known in the literature taking this second point into account.9

Therefore, we will compute adjusted Gittins indices (taking the first modification into
account), and then let players simply choose the arm with the highest Gittins index. Hence,
we obtain an approximation of optimal behavior. This approximation deviates from optimal
behavior only by the fact that it assumes the expectation for the average payoffs of all
other arms to remain constant while repeatedly choosing one arm. Since this deviation is
similar for all arms, the ranking of the Gittins indices should be little influenced by this
approximation.

The Gittins indices are calculated as described in the literature (see Gittins [1979,
1989]). At each time, t, for each arm, i, the stopping rule is calculated that leads to the
highest average payoff for repeatedly choosing this arm. This is done through backward
induction on all possible sequences of outcomes for repeatedly choosing arm i. Whenever
continuing the choice of arm i decreases the average payoff, the choice is stopped. The
expected probability Ei(t) of arm i to lead to a positive payoff is calculated at each time, t,
according to Equation (*). The probability P(h,t) for each hypothesis, h, is updated
according to Bayes' rule. This means that

∑
∈

⋅
⋅

=+

Hh
i tpppPp

tpppPptpppP
),,...,,(
),,...,,()1,,...,,(

921

9211
921

holds if arm i is chosen at time t and a positive outcome results and that

∑
∈

⋅−
⋅−

=+

Hh
i tpppPp

tpppPptpppP
),,...,,()1(
),,...,,()1()1,,...,,(

921

9211
921

holds if arm i is chosen at time t and an outcome of zero results. The initial prior is that
each hypothesis, h, is equally likely.

4.2 Modeling boundedly rational learning
To put the adjusted Gittins index approach further into perspective, we now describe

two models of boundedly rational learning.
With reinforcement learning we assume that players A have no understanding of

                    
     9 To calculate optimal behavior in such a situation requires to examine all possible sequences of
actions, their potential outcomes, and the respective probabilities, which is computationally not
feasible.
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game theory, the structure of the ultimatum game, or the behavior of players B. Players A are
boundedly rational agents who behave adaptively to their environment. They simply try
actions, and are in the future more likely to choose those offers that had been more
reinforced (through higher payoffs) in the past. One can imagine players A playing with a
multi-armed bandit, where different arms might give different payoffs, and players A do not
know at the start which is the best arm to pull. The basic reinforcement learning model is as
follows (see also Roth & Erev [1995]): At time t=1 each player has an initial propensity to
choose his ith arm given by some real number qi(1).  We assume qj(1) = q(1) for each j, and
Σqj(1) = 10 (following Roth & Erev [1995]). If a player plays arm i at time t, and receives a
payoff of z, then the propensity to choose arm i is updated by setting qi(t+1)=qi(t)+z, while for
all other arms j, qj(t+1)=qj(t). The probability that the player selects his ith arm at time t is pi(t)
= qi(t)/Σqj(t), where the sum is over all the available arms j. Thus, given the reinforcements for
all offers, a player chooses (with some experimentation) his most reinforced offer. Notice that
in the reinforcement learning model players ignore the interdependence of the arms.

Players A who behave according to learning direction theory (see, e.g., Selten &
Stoecker [1986]) look at the outcome of the most recent period, and reason in which
direction a better offer could have been found. They, then, simply adjust their current offer
into that direction. More specifically, if a player A found an offer i was rejected at time t, then
at time t+1 he will offer i+1 to player B (unless offer i equaled the maximal possible offer). If,
on the other hand, offer i was accepted at time t, then at time t+1 he will offer i-1 to player B
(unless offer i equaled the minimal possible offer). Notice that a player learning according to
learning direction theory can be seen as seeking myopically for a best-response against his
latest opponent, and that implicitly he takes the interdependence of the arms into account.

5.  Predicted dynamics for learning theories
We first consider the predicted choices for the model of optimal learning based on

the adjusted Gittins indices, adjusted to take into account the interdependence of the arms
in our ultimatum game.
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Figure 4.  Theoretical prediction of the average behavior using adjusted Gittins indices

Figure 4 shows the average behavior of the model of optimal learning over 100 runs for
the three different treatments. We make the following observations. First, the initial choice
is 4. This is due to the fact that, according to the initial probabilities for the different
hypotheses, the fourth arm has to the highest Gittins index in the first round. Second,
differences between the treatments emerge early on, with the ult3 treatment showing an
increase in average offers, the ult7 treatment more of a decline, and the ult5 treatment
somewhere in between. Third, after the initial learning phase there is no further downward
trend, and no convergence to the optimal minimal offer. The optimal choice (an offer of 1)
is chosen with probability zero in all three treatments after 100 rounds, and the average
offer only falls below 4 for treatment ult7.

We draw two conclusions from these observations. First, the situation faced by the
players in our ultimatum game experiment is such that even with optimal learning no
convergence to the optimal offer of 1 takes place within 100 rounds. Second, the predicted
behavior of the model of optimal learning shows qualitative similarities with the actual
experimental data. This concerns in particular, the initial choices, the early emergence of
differences between the treatments, and the lack of convergence to the optimal offer.

There is, however, also some qualitative difference between the predicted behavior
of the model of optimal learning and the experimental data.  In the experimental data we
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observe a weak downward trend, whereas the model of optimal learning does not show a
trend at all. The reason for the lack of a downward trend towards the optimal offer with the
model of optimal learning is a lack of experimentation by these players. Given the structure
of the ultimatum game, each outcome provides not only information about the probability
behind the chosen arm but also about the probabilities behind the other arms because the
probabilities depend on each other. As a result, experimentation by actually trying other
arms is relatively less attractive than in the case of independent arms, and the players
tend to stick more to their choices. In the experimental data, we see that the players tend
to experiment more than in the model of optimal learning, but not enough to learn to
choose the optimal minimal offer.

To gain some further insights where we should expect learning to lead to in the
ultimatum game experiment, we now consider the predicted behavior of a number of
learning models that deviate from the optimal one.

The above analysis of the model of optimal learning has shown that players are
unable to learn to make the optimal offer because exploration is not sufficiently attractive.
This is caused by the interdependence of the probabilities of the arms. Furthermore, the
experiment shows that people experiment more than predicted by the above modelling.
Hence, it might be conjectured that perhaps people neglect the information about the
relationship between the arms and actually treat them as independent. This leads to the
standard Gittins index approach. That is, there is a separate set of hypotheses for each
arm. The hypotheses for arm i are given by all possible probabilities pi. The initial beliefs
are that each hypothesis is equally likely. This leads to an initial prediction of 0.50 for each
arm to lead to a positive outcome. The expected probability for each arm is determined
only by the experience that has been made with this arm in the past. On the basis of the
probabilities that result from Bayesian updating, the Gittins indices are calculated for each
arm. Then, the arm which offers the highest Gittins index is chosen.

Figure 5 shows the average behavior for 100 runs of the standard Gittins index
approach, neglecting the interdependence of the arms. We make the following
observations. First, the initial offer made is 1. This is due to the unbiased priors, attaching
a probability of acceptance of 0.50 to each arm. Second, the early learning effect leads to
increased offers, with differences between the three treatments emerging. Third, this is
followed by a weak downward trend, with only about half of the players making the optimal
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minimal offer in the end (47%, 56% and 64% for the ult3, ult5 and ult7 treatments
respectively), although they had all started there in the first round.10

Figure 5.  Theoretical prediction of the average behavior using Gittins indices

Hence, for this learning model that neglects the interdependence between the arms
we see again that the players do not really learn to make the minimal offer, and, again,
there are some qualitative similarities with the actual experimental data. The latter applies
in particular to the weak downward trend.

It might be that the actual players in the experiment start out taking into account
correctly the information about the situation (the interdependence of the arms, as predicted
by the adjusted Gittins index approach), when they have no other information. However,
as time progresses they increasingly neglect this information about the situation (being
boundedly rational), and they start experimenting more and more with different arms (as
predicted by the standard Gittins index approach).

This leads us to consider the predicted dynamics of the two boundedly rational
models of learning presented in section 4; not so much to test which model fits the

                    
     10 The fact that there is more of a downward trend towards the optimal minimal offer may seem
counter-intuitive, as this model makes less use of the available information than the model of
optimal learning analyzed above.
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experimental data best, but to get a better idea as to where we should expect learning to
lead to in the ultimatum game experiment.

Figure 6 shows the average offers for 1000 players using reinforcement learning as in
Roth & Erev [1995]. We observe the following. First, the initial choices are about 5. Second,
gradually differences between the treatments emerge. Third, there is a weak downward
trend, and in none of the treatments is the optimal minimal offer approached.

Figure 6.  Theoretical prediction of the average behavior using reinforcement learning

Figure 7 shows the average offers for 1000 learning direction theory players. We
observe the following. First, the initial offers are again around 5. Second, after a steep initial
learning effect, the average offers are constant in each treatment.11 Third, during this initial
learning phase, marked differences between the treatments emerge.

Hence, we can conclude that the situation faced by the players in an ultimatum game
is such that also players learning according to these models of boundedly rational behavior
would not learn to make the optimal minimal offer. Moreover, these models of boundedly
rational learning display some qualitative similarities with the actual experimental data. This
concerns in particular the differences between the treatments and the lack of a clear trend
towards the optimal minimal offer. Interestingly, similar to what we observed with the
                    
     11 This is not surprising given that this is a discrete Markov process. Notice also that the stationary
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adjusted and standard Gittins indices, the reinforcement learning model, which does not take
any interdependence of the offers into account, predicts more of a downward trend than
learning direction theory, which is based on an assumed interdependence of the offers.12

Figure 7.  Theoretical prediction of the average behavior using learning direction theory

6.  Concluding remarks
This paper makes three contributions to the literature. First, we designed a laboratory

experiment of a stylized ultimatum game, in which we abstract from the coevolutionary
aspects of adaptive behavior in a standard ultimatum game experiment, and in which there is
also no scope for altruism or fairness considerations. That is, we organized an experiment
that matches the situation studied in multi-armed bandit problems. The behavior of the
receiving players B is fixed from the outset in such a way that making the minimal offer of  1
is optimal. We show that even if the learning task for the proposing players A is made as
easy as possible, while maintaining realistic assumptions concerning the behavior of players

(..continued)
distributions of offers are independent from the initial guesses.
     12 We also considered a 2-stage model combining reinforcement learning and learning direction.
This model has two different levels of learning. At the base level a player learns which offer to make.
He can do this using either reinforcement learning or using learning direction theory. At the higher
level a player learns which of these two modes of learning to use. This model gives a rather good fit
for the average offers in each of the three treatments.
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B, players A do not really learn this, notwithstanding a learning opportunity of 100 periods.
Average offers are coming down, but very slowly. Hence, the lack of convergence to the
subgame perfect equilibrium offer in ultimatum game experiments is not necessarily related
to coevolutionary aspects of learning or to fairness considerations.

Second, we show that the lack of convergence to the optimal minimal offer is
inherent in the learning task faced by players A, independent from the learning of players
B. Analyzing a range of learning theories (from optimal learning based on the Gittins index
to boundedly rational learning) in a setup that matches exactly the experimental design, we
show why one should not expect convergence to the optimal offer, not even if the learning
task is made as easy as possible.13 That is, we offer a theoretical explanation for the
experimentally observed lack of convergence to the optimal offer.

Third, although the objective of this paper is not to find the learning model that fits
the experimental data best, our analysis does yield some insights into the actual learning
behavior of the experimental subjects. Their initial choices suggest that they are
reasonably good at taking the structure of the choice situation they face into account (in
particular the interdependence of the offers), as their initial choices are consistent with the
unbiased guesses of the optimal learning model. But these initial guesses happen to be far
away from the real probabilities that actually determine the optimal minimal offer. The
weak downward trend in the data suggests that the experimental subjects increasingly
forget the initial information about this interdependence between the offers, and continue
to experiment, as predicted by those learning models that assume independent arms.
Although this implies more experimentation than predicted by the model of optimal
learning, and this helps to overcome misleading initial guesses, convergence towards the
optimal minimal offer takes place only very partly.14
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Appendix: Instructions to the players

Introduction
• This is a decision experiment. The instructions are simple, and if you pay attention, you can

gain a reasonable amount of money. From now on till the end of the experiment you are not
allowed to communicate with each other. If you have a question, please raise your hand. You
are not allowed to use paper, pen, calculator, or any other material not provided by the
organizers of the experiment.

• Each of you will play repeatedly the same basic game. Before explaining how often, and with
whom you will play this game, we will first explain the basic game as such.

The Basic Game
• There are two players: player A, and player B. Player A has a pie cut in 9 equal slices. Player

A makes a proposal to player B concerning the distribution of the pie. Player A can offer to
player B from 1 up to 9 slices. Only whole slices are allowed. Player B can do 2 things. First,
player B can accept the proposal of player A, which will then be carried out, player B getting
the number of slices proposed by player A, and player A keeping the rest of the pie. Second,
player B can reject the proposal of player A, in which case the pie perishes immediately, and
both players will get nothing.

• Example: if player A proposes to give player B 1 slice, and player B accepts, then player B's
payoff will be 1 slice, and player A will keep 8 slices. If, however, player B rejects the proposal,
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then the payoff for both players will be 0 slices.

The Experiment
• You will play the same basic game for 100 rounds. In each round you will play the role of the

proposer: player A. Each round you will be matched `at random' with some player B. You will
never play more than once against the same player B.

• The players B with whom you will be matched are drawn from a large population of Artificially
Intelligent agents, making their decisions using some computer algorithm.

• Each of those players B's behavior is systematic in the following sense: If a specific player B
has accepted an offer x then that player B would have accepted as well any offer greater than
x. And if offer x had been rejected by that player B, so would have been all offers smaller than
x. Of course, different players B might have different opinions about which offers are
acceptable or not. The players B do not change their behavior over time.

• During the experiment, your computer screen will be divided into 2 windows. The upper
window will give you general messages, ask for input, etc. The lower window will display the
history of your experiment. This window will be scrollable (using the arrows ↑  and ↓), such that
you have always access to the complete history. The history will list all rounds, the identity of
the specific player B you were matched with, the offer you made, player B's response, and the
resulting payoff for you.

• To make your offer, please enter a number. Remember that only integer values from 1 to 9
can be chosen. Please, before pressing Enter, always make sure that you did not make a
typing-error.

• There is no time limit for your decisions.

Payment
• You will be paid according to the total payoffs you realized. For each slice of a pie gained you

will get 83.3 Lire. At the end of the experiment, we will add up your payoffs, and calculate your
monetary rewards. This will be done in a separate room, so you will not see what other players
earned.


